2009年浙江省某市教師招聘考試小學(xué)數(shù)學(xué)試題及答案
(滿分:100分)
一、填空題(本大題共10個(gè)小題,每小題2分,共20分)
1.用0-9這十個(gè)數(shù)字組成最小的十位數(shù)是,四舍五入到萬(wàn)位,記作萬(wàn)。
2.在一個(gè)邊長(zhǎng)為6厘米的正方形中剪一個(gè)最大的圓,它的周長(zhǎng)是厘米。面積是。
3.△+□+□=44
△+△+△+□+□=64
那么□=,△=。
4.汽車站的1路車20分鐘發(fā)一次車,5路車15分鐘發(fā)一次車,車站在8:00同時(shí)發(fā)車后,再遇到同時(shí)發(fā)車至少再過(guò)。
5.2/7的分子增加6,要使分?jǐn)?shù)的大小不變,分母應(yīng)該增加。
6.有一類數(shù),每一個(gè)數(shù)都能被11整除,并且各位數(shù)字之和是20,問(wèn)這類數(shù)中,最小的數(shù)是。
7.在y軸上的截距是1,且與x軸平行的直線方程是。
8.函數(shù)y=1x+1的間斷點(diǎn)為x=。
9.設(shè)函數(shù)f(x)=x,則f′(1)=。
10. 函數(shù)f(x)=x3在閉區(qū)間[-1,1]上的最大值為。
二、選擇題(在每小題的四個(gè)備選答案中,選出一個(gè)符合題意的正確答案,并將其字母寫在題干后的括號(hào)內(nèi)。本大題共10小題,每小題3分,共30分)
1.自然數(shù)中,能被2整除的數(shù)都是()。
A. 合數(shù)B. 質(zhì)數(shù)
C. 偶數(shù)D. 奇數(shù)
2.下列圖形中,對(duì)稱軸只有一條的是()。
A. 長(zhǎng)方形B. 等邊三角形
C. 等腰三角形D. 圓
3.把5克食鹽溶于75克水中,鹽占鹽水的()。
A. 1/20B. 1/16
C. 1/15D. 1/14
4.設(shè)三位數(shù)2a3加上326,得另一個(gè)三位數(shù)5b9,若5b9能被9整除,則a+b等于()。
A. 2B. 4
C. 6D. 8
5.一堆鋼管,最上層有5根,最下層有21根,如果自然堆碼,這堆鋼管最多能堆()根。
A. 208B. 221
C. 416D. 442
6.“棱柱的一個(gè)側(cè)面是矩形”是“棱柱為直棱柱”的()。
A. 充要條件
B. 充分但不必要條件
C. 必要但不充分條件
D. 既不充分又不必要條件
7.有限小數(shù)的另一種表現(xiàn)形式是()。
A. 十進(jìn)分?jǐn)?shù)B. 分?jǐn)?shù)
C. 真分?jǐn)?shù)D. 假分?jǐn)?shù)
8.設(shè)f(x)=xln(2-x)+3x2-2limx→1f(x),則limx→1f(x)等于()。
A. -2B. 0
C. 1D. 2
9.如果曲線y=f(x)在點(diǎn)(x,y)處的切線斜率與x2成正比,并且此曲線過(guò)點(diǎn)(1,-3)和(2,11),則此曲線方程為()。
A. y=x3-2B. y=2x3-5
C. y=x2-2D. y=2x2-5
10. 設(shè)A與B為互不相容事件, 則下列等式正確的是()。
A. P(AB)=1
B. P(AB)=0
C. P(AB)=P(A)P(B)
D. P(AB)=P(A)+P(B)
三、解答題(本大題共18分)
1.脫式計(jì)算(能簡(jiǎn)算的要簡(jiǎn)算):(4分)
。112+(3.6-115)÷117]÷0.8
2.解答下列應(yīng)用題(4分)
前進(jìn)小學(xué)六年級(jí)參加課外活動(dòng)小組的人數(shù)占全年級(jí)總?cè)藬?shù)的48%,后來(lái)又有4人參加課外活動(dòng)小組,這時(shí)參加課外活動(dòng)的人數(shù)占全年級(jí)的52%,還有多少人沒(méi)有參加課外活動(dòng)?
3.計(jì)算不定積分:∫x1+xdx。(4分)
4.設(shè)二元函數(shù)z=x2ex+y,求(1)zx;(2)zy;(3)dz。(6分)
四、分析題(本大題共1個(gè)小題,6分)
分析下題錯(cuò)誤的原因,并提出相應(yīng)預(yù)防措施。
“12能被0.4整除”
成因:
預(yù)防措施:
五、論述題(本題滿分5分)
舉一例子說(shuō)明小學(xué)數(shù)學(xué)概念形成過(guò)程。
六、案例題(本大題共2題,滿分共21分)
1. 下面是兩位老師分別執(zhí)教《接近整百、整千數(shù)加減法的簡(jiǎn)便計(jì)算》的片斷,請(qǐng)你從數(shù)學(xué)思想方法的角度進(jìn)行分析。(11分)
張老師在甲班執(zhí)教:1.做湊整(十、百)游戲;2.拋出算式323+198和323-198,先讓學(xué)生計(jì)算,再小組內(nèi)部交流,班內(nèi)匯報(bào)討論,討論的問(wèn)題是:把198看作什么數(shù)能使計(jì)算簡(jiǎn)便?加上(或減去)200后,接下去要怎么做?為什么?然后師生共同概括速算方法!毩(xí)反饋表明,學(xué)生錯(cuò)誤率相當(dāng)高。主要問(wèn)題是:在“323+198=323+200-2”中,原來(lái)是加法計(jì)算,為什么要減2?在“323-198=323-200+2”中,原來(lái)是減法計(jì)算,為什么要加2?
李老師執(zhí)教乙班:給這類題目的速算方法找了一個(gè)合適的生活原型——生活實(shí)際中收付錢款時(shí)常常發(fā)生的“付整找零”活動(dòng),以此展開(kāi)教學(xué)活動(dòng)。1.創(chuàng)設(shè)情境:王阿姨到財(cái)務(wù)室領(lǐng)獎(jiǎng)金,她口袋里原有124元人民幣,這個(gè)月獲獎(jiǎng)金199元,現(xiàn)在她口袋里一共有多少元?讓學(xué)生來(lái)表演發(fā)獎(jiǎng)金:先給王阿姨2張100元鈔(200元),王阿姨找還1元。還表演:小剛到商場(chǎng)購(gòu)物,他錢包中有217元,買一雙運(yùn)動(dòng)鞋要付198元,他給“營(yíng)業(yè)員”2張100元鈔,“營(yíng)業(yè)員”找還他2元。2.將上面發(fā)獎(jiǎng)金的過(guò)程提煉為一道數(shù)學(xué)應(yīng)用題:王阿姨原有124元,收入199元,現(xiàn)在共有多少元?3.把上面發(fā)獎(jiǎng)金的過(guò)程用算式表示:124+199=124+200-1,算出結(jié)果并檢驗(yàn)結(jié)果是否正確。4.將上面買鞋的過(guò)程加工提煉成一道數(shù)學(xué)應(yīng)用題:小剛原有217元,用了198元,現(xiàn)在還剩多少元?結(jié)合表演,列式計(jì)算并檢驗(yàn)。5.引導(dǎo)對(duì)比,小結(jié)整理,概括出速算的法則!毩(xí)反饋表明,學(xué)生“知其然,也應(yīng)知其所以然”。
2.根據(jù)下面給出的例題,試分析其教學(xué)難點(diǎn),并編寫出突破難點(diǎn)的教學(xué)片段。(10分)
例:小明有5本故事書,小紅的故事書是小明的2倍,小明和小紅一共有多少本故事書?
參考答案及解析(下一頁(yè))
一、填空題
1.1023456789102346[解析] 越小的數(shù)字放在越靠左的數(shù)位上得到的數(shù)字越小,但零不能放在最左邊的首數(shù)位上。故可得最小的十位數(shù)為1023456789,四舍五入到萬(wàn)位為102346萬(wàn)。
2.6π9π平方厘米[解析] 正方形中剪一個(gè)最大的圓,即為該正方形的內(nèi)切圓。故半徑r=12×6=3(厘米),所以它的周長(zhǎng)為2πr=2π×3=6π(厘米),面積為πr2=π×32=9π(厘米2)。
3.1710[解析] 由題干知△+2□=44(1)
3△+2□=64(2),(2)-(1)得2△=20,則△=10,從而2□=44-10,解得□=17。
4.60分鐘[解析] 由題干可知,本題的實(shí)質(zhì)是求20與15的最小公倍數(shù)。因?yàn)?0=2×2×5,15=3×5,所以它們的最小公倍數(shù)為2×2×3×5=60。即再遇到同時(shí)發(fā)車至少再過(guò)60分鐘。
5.21[解析] 設(shè)分母應(yīng)增加x,則2+67+x=27,即:2x+14=56,解得x=21。
6.1199[解析] 略
7.y=1[解析] 與x軸平行的直線的斜率為0,又在y軸上的截距為1,由直線方程的斜截式可得,該直線的方程為y=1。
8.-1[解析] 間斷點(diǎn)即為不連續(xù)點(diǎn),顯然為x+1=0時(shí),即x=-1。
9.12[解析] 由f(x)=x可知,f′(x)=(x)′=(x12)′=12x-12=12x,故f′(1)=12×1=12。
10.1[解析] 因?yàn)閒′(x)=3x2≥0,所以f(x)在定義域R上單調(diào)遞增,所以在[-1,1]上也遞增,故最大值在x=1處取得,即為f(1)=1。
二、選擇題
1.C[解析] 2能被2整除,但它為質(zhì)數(shù),故A錯(cuò)誤。4能被2整除,但4是合數(shù)而不是質(zhì)數(shù),故B錯(cuò)誤。奇數(shù)都不能被2整除,能被2整除的數(shù)都為偶數(shù)。
2C[解析] 長(zhǎng)方形有兩條對(duì)稱軸,A排除。等邊三角形有三條對(duì)稱軸,B排除。圓有無(wú)數(shù)條對(duì)稱軸,D排除。等腰三角形只有一條對(duì)稱軸,即為底邊上的中線(底邊上的高或頂角平分線)。
3.B[解析] 鹽水有5+75=80(克),故鹽占鹽水的580=116。
4.C[解析] 由2a3+326=5b9可得,a+2=b,又5b9能被9整除,可知b=4,則a=2,所以a+b=2+4=6。
5.B[解析] 如果是自然堆碼,最多的情況是:每相鄰的下一層比它的上一層多1根,即構(gòu)成了以5為首項(xiàng),1為公差的等差數(shù)列,故可知21為第17項(xiàng),從而這堆鋼管最多能堆(5+21)×172=221(根)。
6.C[解析] 棱柱的一個(gè)側(cè)面是矩形/ 棱柱的側(cè)棱垂直于底面,而棱柱為直棱柱棱柱的側(cè)棱垂直于底面棱柱的側(cè)面為矩形。故為必要但不充分條件。
7.A[解析] 13為分?jǐn)?shù)但不是有限小數(shù),B排除。同樣13也是真分?jǐn)?shù),但也不是有限小數(shù),排除C。43是假分?jǐn)?shù),也不是有限小數(shù),D排除。故選A。
8.C[解析] 對(duì)f(x)=xln(2-x)+3x2-2limx→1f(x)兩邊同時(shí)取極限為:limx→1f(x)=0+3-2limx→1f(x),即3limx→1f(x)=3,故limx→1f(x)=1。故選C。
9.B[解析] 由曲線過(guò)點(diǎn)(1,-3)排除A、C項(xiàng)。由此曲線過(guò)點(diǎn)(2,11)排除D,故選B。y=2x3-5顯然過(guò)點(diǎn)(1,-3)和(2,11),且它在(x,y)處的切線斜率為6x2,顯然滿足與x2成正比。
10. B[解析] 由A與B為互不相容事件可知,A∩B=,即P(AB)=0且P(A+B)=P(A∪B)=P(A)+P(B)。故選B。
三、解答題
1.解:[112+(3.6-115)÷117]÷0.8
=[32+(335-115)÷87]÷45
=(32+125×78)÷45
=(32+2110)÷45
=185×54
=92。
2.解:設(shè)全年級(jí)總?cè)藬?shù)為x人,則
x•48%+4x=52%
解得:x=100
所以沒(méi)有參加課外活動(dòng)的人數(shù)為100×(1-52%)=48(人)。
3.解:∫x1+xdx=∫x+1-1x+1dx=∫ dx-∫1x+1dx=x-ln|x+1|+C(C為常數(shù))。
4.解:(1)zx=2xex+y+x2ex+y=(x2+2x)ex+y;
(2)zy=x2ex+y;
(3)dz=zxdx+zydy=(x2+2x)ex+ydx+x2ex+ydy。
四、分析題
參考答案:成因:沒(méi)有理解整除的概念,對(duì)于數(shù)的整除是指如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a。概念要求除數(shù)應(yīng)為自然數(shù),0.4是小數(shù)。而且混淆了整除與除盡兩個(gè)概念。故錯(cuò)誤。
預(yù)防措施:在講整除概念時(shí),應(yīng)讓學(xué)生清楚被除數(shù)、除數(shù)和商所要求數(shù)字滿足的條件。即被除數(shù)應(yīng)為整數(shù),除數(shù)應(yīng)為自然數(shù),商應(yīng)為整數(shù)。并且講清整除與除盡的不同。
五、簡(jiǎn)答題
參考答案:小學(xué)數(shù)學(xué)概念的形成過(guò)程主要包括(1)概念的引入;(2)概念的形成;(3)概念的運(yùn)用。
例如:對(duì)于“乘法分配律”的講解:
(1)概念的引入:根據(jù)已經(jīng)學(xué)過(guò)的乘法交換律,只是對(duì)于乘法的定律,在計(jì)算時(shí),很多時(shí)候會(huì)遇到乘法和加法相結(jié)合的式子,如(21+14)×3。
。2)概念的形成:通過(guò)讓學(xué)生計(jì)算,歸納發(fā)現(xiàn)乘法分配律。
比較大小:①(32+11)×532×5+11×5
、(26+17)×226×2+17×2
學(xué)生通過(guò)計(jì)算后很容易發(fā)現(xiàn)每組中左右兩個(gè)算式的結(jié)果相等,再引導(dǎo)學(xué)生觀察分析,可以看出左邊算式是兩個(gè)數(shù)的和與一個(gè)數(shù)相乘,右邊算式是兩個(gè)加數(shù)分別與這個(gè)數(shù)相乘,再把兩個(gè)積相加。雖然兩個(gè)算式不同,但結(jié)果相同。然后就可以引導(dǎo)學(xué)生歸納總結(jié)出“乘法分配律”,即(a+b)×c=a×c+b×c。
(3)概念的運(yùn)用:通過(guò)運(yùn)用概念達(dá)到掌握此概念的目的。
計(jì)算下題:①(35+12)×10
、(25+12.5)×8
學(xué)生通過(guò)運(yùn)用所學(xué)的乘法分配律會(huì)很快得到結(jié)果,比先算括號(hào)里兩個(gè)數(shù)的和再乘外面的數(shù)要快的多,從而學(xué)生在以后的計(jì)算中會(huì)想到運(yùn)用乘法分配律,也就掌握了概念。
六、案例題
1. 參考答案:分析建議:張教師主要用了抽象與概括的思想方法;李老師用了教學(xué)模型的方法,先從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型,然后通過(guò)邏輯推理得出模型的解,最后用這一模型解決實(shí)際問(wèn)題。教師可從這方面加以論述。
2. 參考答案:略。