99久久免费国产香蕉麻豆,欧美极品第一页,japanese熟妇与子乱视频,91香蕉国产线观看免费全集,久久青,黄色网站在线免费亚洲,国产区综合另类亚洲欧美

文武教師招聘網(wǎng)
首頁 浙江教師 福建教師 江蘇教師 廣東教師 江西教師 安徽教師 北京教師 上海教師 天津教師 湖南教師 湖北教師 河南教師
河北教師 海南教師 重慶教師 貴州教師 遼寧教師 吉林教師 山西教師 廣西教師 云南教師 陜西教師 甘肅教師 青海教師 四川教師
山東教師 內(nèi)蒙古教師 黑龍江教師 寧夏教師 新疆教師 西藏教師 教師面試 說課稿 教案 考試大綱 教師招聘試題 特崗教師 教師資格考試
杭州教師  廣州教師  長沙教師  南京教師  福州教師  南昌教師  教師考試大綱  教師資格大綱  政治資料  地理資料
您現(xiàn)在的位置:首頁 >> 教案 >> 初中數(shù)學教案 >> 內(nèi)容

初中數(shù)學教案:七年級數(shù)學《有理數(shù)乘法》教案模板

時間:2012-12-5 17:06:22 點擊:

教學目標

1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;

2.能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學生掌握多個有理數(shù)相乘的積的符號法則;

3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應用乘法交換律、結(jié)合律、分配律簡化運算過程;

4.通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學生的運算能力;

5.本節(jié)課通過行程問題說明法則的合理性,讓學生感知到數(shù)學知識來源于生活,并應用于生活。
教學建議

(一)重點、難點分析

本節(jié)的教學重點是能夠熟練進行運算。依據(jù)法則和運算律靈活進行有理數(shù)乘法運算是進一步學習除法運算和乘方運算的基礎。運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。

本節(jié)的難點是對法則的理解。法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。

(二)知識結(jié)構(gòu)

 

(三)教法建議

1.有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。

2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”.絕對值相乘也就是小學學過的算術乘法.

3.基礎較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。

4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.

5.小學學過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。

6.如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。
教學設計示例

(第一課時)

教學目標

1.使學生在了解意義基礎上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;

2.通過運算,培養(yǎng)學生的運算能力;

3.通過教材給出的行程問題,認識數(shù)學來源于實踐并反作用于實踐。

教學重點和難點

重點:依據(jù)法則,熟練進行運算;

難點:有理數(shù)乘法法則的理解.

課堂教學過程 設計

一、從學生原有認知結(jié)構(gòu)提出問題

1.計算(-2)+(-2)+(-2).

2.有理數(shù)包括哪些數(shù)?小學學習四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))

3.有理數(shù)加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)

4.根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學習的除法中將引出的新內(nèi)容以及關鍵問題是什么?(負數(shù)問題,符號的確定)

二、師生共同研究有理數(shù)乘法法則

問題1  水庫的水位每小時上升3厘米,2小時上升了多少厘米?

解:3×2=6(厘米) ①

答:上升了6厘米.

問題2  水庫的水位平均每小時下降3厘米,2小時上升多少厘米?

解:-3×2=-6(厘米) ②

答:上升-6厘米(即下降6厘米).

引導學生比較①,②得出:

把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).

這是一條很重要的結(jié)論,應用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學生答)

把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.

把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.

此外,(-3)×0=0.

綜合上面各種情況,引導學生自己歸納出有理數(shù)乘法的法則:

兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

任何數(shù)同0相乘,都得0.

繼而教師強調(diào)指出:

“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學學習的乘法,有理數(shù)中特別注意“負負得正”和“異號得負”.

用有理數(shù)乘法法則與小學學習的乘法相比,由于介入了負數(shù),使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結(jié)為小學的乘法了.

因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值.

三、運用舉例,變式練習

例1  計算:


例2  某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.

(1)t小時后溫度是多少?

(2)當a,t分別是下列各數(shù)時的結(jié)果:

①a=3,t=2;②a=-3,t=2;

②a=3,t=-2;④a=-3,t=-2;

教師引導學生檢驗一下(2)中各結(jié)果是否合乎實際.

課堂練習

1.口答:

(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);


2.口答:

(1)1×(-5); (2)(-1)×(-5); (3)+(-5);

(4)-(-5); (5)1×a; (6)(-1)×a.

這一組題做完后讓學生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調(diào)指出,a可以是正數(shù),也可以是負數(shù)或0;-a未必是負數(shù),也可以是正數(shù)或0.

3.當a,b是下列各數(shù)值時,填寫空格中計算的積與和:


4.填空:

(1)1×(-6)=______;(2)1+(-6)=_______;

(3)(-1)×6=________;(4)(-1)+6=______;

(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

5.判斷下列方程的解是正數(shù)還是負數(shù)或0:

(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

四、小結(jié)

今天主要學習了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”.

五、作業(yè)

1.計算:

(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).

2.計算:


3.填空(用“>”或“<”號連接):

(1)如果 a<0,b<0,那么 ab ________0;

(2)如果 a<0,b<0,那么ab _______0;

(3)如果a>0時,那么a ____________2a;

(4)如果a<0時,那么a __________2a.

探究活動

問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?

答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.

道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.

作者:不詳 來源:網(wǎng)絡
相關文章
  • 文武教師招聘網(wǎng)(m.henchongshi.com) © 2012 版權所有 All Rights Reserved.
  • 站長聯(lián)系QQ:799752985 浙ICP備11036874號-1
  • Powered by 文武教師招聘網(wǎng)